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Vijendra Kumar*, O.P. Swami, A.K. Nagar 
 

Abstract— In this paper, we consider two dimensional assembly of coupled quantum dots interacting with the driving electromagnetic field. 
Keeping in view the local field effects, two discrete nonlinear Schrodinger equations are used to model the quantum dot (QD) assembly. 
We observe and study the interaction of solitons with quantum dots in the form of Rabi oscillations in QD assembly, coupled to 
electromagnetic field. Numerical calculations are performed and Rabi oscillations are analysed with the help of matlab software. As a 
result, we obtain properties and pattern of the radiative fields of the assembly in the modes of Rabi oscillations. 

Index Terms — Discrete nonlinear Schrodinger equation, Electromagnetic Field, Local Field Effect, Matlab Software, Quantum Dot, Rabi 
Oscillations, Radiative Fields. 

——————————      —————————— 

1     INTRODUCTION                                                                    

he electronic properties of a quantum dot are closely re-
lated to its size and shape which allows the excitation and 
emission of quantum dots to be highly tunable[1]. The size 

of a quantum dot can be set during its formation to control its 
conductive propertives. Using many different sizes of quan-
tum dots, we can achieve some quantum dot assemblies such 
as gradient multilayer nanofilms to exhibit a range of desirable 
emission properties. Therefore, the study of solitons in the 
assemblies of quantum dots has become an important topic of 
research. 
      One salient outcome of this study is that the radiative 
properties of solitons in the assembly of coupled quantum 
dots depend critically on the lattice geometry and symmetry. 
While on the other hand, the fundamental property of all type 
of solitons greatly depends on dimensionality. In this paper 
we consider a 2-dimensional assembly of coupled quantum 
dots interacting with the driving electromagnetic field. Taking 
into account the local field effects, two discrete nonlinear 
Schrodinger wave equations are used to model the assembly 
of coupled quantum dots. Local field effects also have their 
important role in the formation of excitonic Rabi oscillations in 
the self assembly of quantum dots [2, 3, 9 and 11]. In the form 
of Rabi oscillations, we observe the interaction between soli-
tons and the assembly of quantum dots coupled to external 
electromagnetic field. Model equations are solved and Rabi 
oscillations are analysed with the help of matlab software. As 
a result, we obtain properties and pattern of the radiative 
fields of the assembly in the modes of Rabi oscillations.   
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2    BASIC EQUATIONS 
Let us consider a two dimensional assembly of identical quan-
tum dots with spacing dXd and it is exposed to the travelling 
wave in x-y plane with electric field 

]})sincos(exp[Re{),,( 0 tiyxikEtyxE ωθθ −′+′=                     (1) 
Here k is the wavenumber and θ ′being the propagation an-
gle. Quantum dots are taken as two level non-dissipative sys-
tems. The transition energy between excited electron orbital 

nma ,  and ground state electron orbital nmb , is 0ω . Here m 
& n denotes the position of quantum dots in x & y directions 
respectively. To ensure only intraband transitions, each quan-
tum dot is coupled to four nearest quantum dots through elec-
tron tunneling in the assembly [4]. The interaction between 
light and quantum dots takes place in the strong regime so 
that the detuning frequency is small enough in comparison to 
both the optical as well as quantum transition frequencies [5, 
6]. 
      Let us consider a quantum dot for which rasing, lowering 
and population operators are denoted as: 

nmnmnm ba ,,,ˆ <>=+σ , nmnmnm ab ,,,ˆ <>=−σ      

And    nmnmnmnmnmz bbaa ,,,,,ˆ <>−<>=σ                  (2) 

The total Hamiltonian for this quantum dot can be written as – 

HHHHH Tdfd
ˆˆˆˆˆ ∆+++=                  (3) 

Here the term dĤ  describes the free electron motion 

∑ −=
nm

nmzdH
,

,
0 ˆ

2
ˆ σω

                  (4) 

The term dfĤ corresponds to the interaction between quan-

tum dots and electromagnetic field. 

∑ ++−= +

nm
nmdf cHnmiEH

,
21,0 ..))(exp()(ˆ φφσµ              (5) 

H.c. stands for Hermitian conjugate operator, the phases 

T 
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= and )sin()

2
(2 θφ kd

=  represent the field 

delay per lattice period due to finite propagation speed. Here 

θ is the spherical coordinate. The term TĤ in equation (3) de-
scribes the part of Hamiltonian for quantum dot with interdot 
coupling through tunneling. 

      The last term Ĥ∆ of equation (3) corresponds to the local 
fields which can be modeled by Hartee-Fock-Bogoliubov ap-
proximations [7, 8] as follows: 

( )∑ −++− +=∆
nm

nmnmnmnmM
V

H
,

,,,,, ˆˆˆˆ4ˆ σσσσµµπ
βαβα        (6) 

Here M,β is the depolarization tensor of a quantum dot while 
μ & μβ are components of the dipolar moment vector. V de-
notes to the volume of a single quantum dot. Now the tem-
poral evolution of single-particle excitations can be governed 
by the Schrodinger equation 

Ψ=
∂
Ψ∂

H
t

i ˆ                               (7) 

      Let us take a wavefunction )(tΨ  in the form of a coherent 
superposition as: 

( )∑ −+−−+ Φ+=Ψ
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nmnm
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212212 )()()( ωφφωφφψ (8) 

Here )(, tnmψ  and )(, tnmΦ are the probability amplitudes. 

      The complete basic system can be modeled by the nonli-

near Schrodinger equations for wave function )(tΨ   and 

the following system of coupled nonlinear evolution equations 
for the probability amplitudes: 
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Here G is the detuning parameter [8], 
2

kd
=ϕ  is the phase 

shift, 2/0Eg µ−= represents to the quantum dot field 

coupling factor and VM /4 αββα µπµω =∆  being the de-

polarization shift. )(aζ  and  )(bζ   are the intersite coupling 
coefficients. Here equations (9) & (10) are used as the basis 
model for the analysis of Rabi oscillation solitons in the as-
sembly of quantum dots.      

3    ANALYTICAL CALCULATIONS 

  

The above system can be normalized as: 
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      The energy of the system can be observed as: 
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      We assume the intersite coupling coefficients for ground 
and excited states to be equal i.e. ζζζ == )()( ba , g=-1 and 
sign Δω=-1. All the signs indicate the attractive onsight linear 
interaction between the fields nm,ψ  and nm,Φ . 

      Let us generalize the 2-dimensional Rabi-wave model in 
the system of quantum dots assembly by considering Δω=0. 
By solving equations (9) & (10), we get the simplified version 
of the system as: 
{ } { } ( ) )exp()(exp,, ,, tinkmkiQP yxnmnm Ω−+=Φψ     (13) 

Here P & Q are unknown wave amplitudes, kx & ky are wa-
venumbers and Ω is an unknown frequency. By the analysis of 
equation (13), we get two branches of the dispersion relation 

[ ])cos()cos()cos()cos(2),( 212,1 φφζ yxyx kkkk +−=Ω   

{ }2
21

2 )]sin()sin()sin()[sin(2 φφζ yx kkGg +−+±  (14) 

Considering constants ζ & g fixed as ζ=1 & g=-1, we get the 
dispersion curves among Ω, kx & ky at different combinations 
of parameters G & ϕ, as shown in the following figure: 
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Figure 1. Dispersion curves among Ω, kx and ky at fixed values of coeffi-
cients ζ=1 & g=-1. Blue surfaces are drawn for G=0 and green surface is for 
G=1. These curves clearly show the existence of discrete solitons.  
   
3.1 Rabi Waves 
Let us substitute 021 === φφφ in equation (14), we get a 
known dispersion relation for the system of linearly coupled 
2-dimensional discrete nonlinear Schrodinger equations [6]. It 
shows two similar branches with a constant shift 

222 Gg +=∆Ω which corresponds to Rabi waves. When 

021 ≠= φφ shift ΔΩ depends on wavenumbers kx & ky and 
become variable. 
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Moreover, 
( ) ( )2121 ,,,,,, φφφφ −−−−Ω=Ω yxyx kkkk               (15) 

And ( ) ( )2121 ,,,,,, φφφφ yxyx kkkk −−Ω≠Ω              (16) 

From equation (15) we can see that inverting the propagation 
direction of the driving fields, the direction of the Rabi-wave 
propagation also get inverted. 

4 RESULTS AND DISCUSSION 
By solving equations (9) & (10), we can get stationary discrete 
2-dimensional fundamental soliton solutions as follows: 
{ } { }nmnm

ti
nmnm QPe ,,,, ,, Ω−=Φψ                                   (17) 

Here Pm,n & Qm,n are localized complex lattice fields vanishing 
at infinity. The stationary soliton solutions of equations (9) & 
(10) are numerically obtained with the help of nonlinear equa-
tion solver based on Powell method. The direct dynamical 
simulations are received by the Runge-Kutta procedure [10]. 
      In this system the field emission is described by the field 

operator M̂  with the help of Heisenberg representation [6] 
as: 
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Here, the operator M̂  of the induced polarization explains 
the displacement current produced by the soliton profile and 
plays an important role in achieving the radiative properties 
of the quantum dots assembly. 
      The field produced by the solitons in the quantum dot as-
sembly is small, linear approximation is used to determine the 
emission of such field and the total field produced by the 
complete system is achieved by superposition of partial fields 
emitted by different quantum dots independently. 
      Let us represent the far zone field in the spherical coordi-
nates assuming origin at the central point of the cell keeping 
m=n=0, as )cos()sin( φθRx = , )sin()sin( φθRy = & )cos(θRz = . 
Here the higher order terms are omitted and longitudinal 
components of the electric field also vanish and we achieve the 
variable field as: 
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With the radiation pattern as: 
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Here [ ]ϕϕθ sincossin1~ nm
cc

Rtt ++−=  and R ,θ ,ϕ  

are the spherical coordinates. From equations (9), (10), (19) & 
(20) using different parameters as Ω=-10, ζ=0.15, G=1 and 
ϕ1=ϕ2=π/4, we get the radiation pattern as shown in figure-2. 
From these equations and figure-2 it is obvious that the radia-

tion pattern is non-steady and depends on the spatio-temporal 

variable 





 −

c
Rt . 

 

 
Figure 2. Radiation patterns observed in E and H planes by chosing the 
values of different parameters as Ω=-10, ζ=0.15, G=1 and ϕ1=ϕ2=π/4. 

5    CONCLUSION 
Considering 2-dimensional assembly of quantum dots and 
using two discrete nonlinear Schrodinger equations, we have 
thus modeled the system. Local field effects were taken into 
account, which introduce the nonlinearity of the electron hole 
motion inside each quantum dot. Numerical calculations were 
performed and analytical computations were made in MAT-
LAB to achieve different dispersion curves at different values 
of parameters showing the presence of discrete solitons. 
      Interaction of solitons with the assembly of quantum dots 
in the form of Rabi oscillations has been observed. Thus, we 
achieved radiative properties of solitons and the radiation pat-
tern has been shown as figure-2. Our study has also shown a 
wide future scope of research in the field of quantum dots. 
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